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Abstract—As parallel algorithms and architectures drive the 
longest molecular dynamics (MD) simulations towards the 
millisecond scale, traditional sequential post-simulation data 
analysis methods are becoming increasingly untenable.  Inspired 
by the programming interface of Google’s MapReduce, we have 
built a new parallel analysis framework called HiMach, which 
allows users to write trajectory analysis programs sequentially, 
and carries out the parallel execution of the programs 
automatically.  We introduce (1) a new MD trajectory data 
analysis model that is amenable to parallel processing, (2) a new 
interface for defining trajectories to be analyzed, (3) a novel 
method to make use of an existing sequential analysis tool called 
VMD, and (4) an extension to the original MapReduce model to 
support multiple rounds of analysis.  Performance evaluations on 
up to 512 cores demonstrate the efficiency and scalability of the 
HiMach framework on a Linux cluster. 

I. INTRODUCTION 
One of the challenging goals of high-performance 

molecular dynamics (MD) simulations is to model important 
biological processes that occur on the millisecond time scale—
about two orders of magnitude beyond the duration of the 
longest current MD simulations.  While great effort has gone 
into the design, implementation, and performance optimization 
of scalable parallel MD simulations using both software [1–7] 
and hardware [8–11] techniques, the analysis of the MD 
trajectories (simulation output data sets) has taken a back seat 
when it comes to scalability and performance, and is usually 
relegated to sequential processing. 

Efficient and effective though they are for manipulating 
relatively short trajectories, sequential analysis tools lack the 
necessary scalability and performance to efficiently handle 
very long MD trajectories with millions of frames.  Today’s 
MD codes are capable of simulating molecular systems with 
tens of thousands of atoms at a speed of roughly a hundred 
nanoseconds per day, producing MD trajectories on the order 
of tens of gigabytes—a scale that already stresses the 
computational, memory, and I/O capabilities of existing 
sequential analysis tools.  As petascale computers [12] and new 
special-purpose MD machines [11] become available, 
trajectories of unprecedented length will be generated, and the 
pressure on post-simulation data analysis tools will continue to 
mount. 

The widening gap between highly scalable parallel MD 

simulations and unscalable sequential data analysis methods 
poses a serious analytics challenge.  Left unaddressed, it would 
hamper scientists’ ability to fully understand and interpret 
simulation results, thus defeating the purpose of developing 
faster and more scalable MD simulations. 

Our research focuses on how to bridge this gap and provide 
a new analytical tool to deal with massive MD trajectories.  At 
first glance, it might appear that implementing a predefined set 
of analysis functions within an efficient parallel program could 
solve the problem.  But because the analysis needs of end users 
are highly varied, it is impossible to foresee all the required 
functionality and develop a one-size-fits-all parallel analysis 
program.  On the other hand, passing along all responsibility to 
the end users is not a feasible solution either.  Researchers who 
study MD trajectories are typically trained in biology, 
chemistry, physics, or medicine, and may not be experts in 
managing large data sets or writing parallel analysis software. 

Inspired by Google’s MapReduce framework [13, 14], we 
propose a new approach to this challenge.  Our main idea is to 
provide a simple, MapReduce-style programming interface for 
users to write sequential MD trajectory analysis codes, which 
are then executed in parallel without user involvement.  We 
have implemented our methodology within a new parallel 
analysis framework called HiMach.  User programs interact 
with HiMach through an application programming interface, 
the HiMach API, to (1) define the MD trajectories to be 
analyzed, (2) specify the procedure of data acquisition, 
(3) implement analysis functions on the retrieved data, and 
(4) aggregate intermediate results when necessary.  
Computational chemists within our group have already used 
the HiMach API to develop a variety of different analyses, 
including the construction of electron density maps, the 
tracking of ions that permeate through a channel, and the 
calculation of self-diffusion coefficients. 

The machinery of automatic parallel execution of user 
programs is implemented within the HiMach runtime, which is 
responsible for assigning tasks to processors, issuing I/O 
requests, interacting with VMD [15] (a sequential MD 
trajectory analysis tool developed by the Theoretical and 
Computational Biophysics group at the University of Illinois at 
Urbana-Champaign), storing and managing intermediate 
results, and communicating and exchanging data among 
processors.  To make the programming model of MapReduce 
amenable to MD trajectory analysis, we introduce (1) a new 
MD trajectory data analysis model that is suitable for parallel 
processing, (2) a new interface for defining trajectories to be 
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analyzed, (3) a novel method to make use of VMD, and (4) an 
extension to MapReduce to support multiple rounds of analysis 
(i.e., chained reduce operations).  

We assessed the efficiency of our framework on a 
commodity Linux cluster using two HiMach-based trajectory 
analysis programs.  Both programs achieved nearly two orders 
of magnitude speedup when going from 1 core to 512 cores.  
Furthermore, we were able to perform a complex analysis on a 
one-terabyte trajectory in 15 minutes on 512 cores. 

To the best of our knowledge, no existing MD trajectory 
analysis tools provide parallel execution capabilities, with the 
exception of VMD, which executes multi-threaded codes for a 
limited number of computationally intensive analysis routines 
such as finding neighboring pairs of atoms.  We believe 
HiMach to be the first framework to support general-purpose 
parallel analysis of very long MD trajectories. 

II. BACKGROUND 
An MD simulation models the motion of atoms within a 

molecular system.  Given a set of initial conditions, an MD 
simulation computes a molecular system’s state—the positions 
and velocities of the constituent atoms—over a sequence of 
discretized time steps.  Typically, the duration of a time step is 
limited to no more than a few femtoseconds (1 femtosecond = 
10 15 seconds) in order to resolve the highest frequency modes 
in the molecular system.  At each time step, the force exerted 
on each atom is computed and a new state is calculated by 
numerically integrating Newton’s laws of motion.  At certain 
user-prescribed intervals, for example, every 104 femtoseconds 
(i.e., 10 picoseconds), snapshots of the state, called frames, are 
stored to disk.  The set of all output frames constitutes the 
trajectory of an MD simulation.  A trajectory frame consists of 
a collection of records (of positions and velocities), each 
corresponding to an atom.  The ordering of the records in a 
trajectory frame corresponds to the ordering of atoms in a 
molecular structure file (e.g., a Protein Data Bank (PDB) 
file [16]), which specifies the types and initial positions of 
individual atoms as well as their bond connectivity. 

An MD trajectory analysis program usually takes a 
molecular structure file and a sequence of trajectory frames as 
input, conducts an analysis calculation, and outputs the 
quantities of interest.  An analysis program can be either 
generic or special purpose.  Generic analyses—for example, the 
computation of properties such as the kinetic energy or center-
of-mass velocity of a set of atoms, or the bond lengths between 
pairs of atoms—are used mostly for exploratory purposes.  
Special-purpose analysis programs, often devised and 
implemented by domain experts, aim to further quantify results 
or stimulate new insights. 

A. Visual Molecular Dynamics (VMD)  
Visual Molecular Dynamics (VMD) [15] is a widely used 

MD trajectory analysis tool.  A user loads an MD trajectory 
into VMD and issues commands through either the 
commandline or the graphical user interface to manipulate the 
atoms, which are rendered accordingly on a computer display.  
In addition, a user can also write analysis scripts using Tcl or 
Python via VMD’s scripting language interface.  VMD 
executes these scripts in text mode without user intervention.  

For very long trajectories that do not fit into the main memory, 
a user may write analysis scripts to implement external 
memory algorithms [17] that explicitly store and retrieve 
temporary results to and from disk. 

 
Figure 1. Data flow of a MapReduce computation. 

 

B. MapReduce
Google’s MapReduce [13, 14] and its open-source 

implementation Hadoop [18] advocate a new way of 
developing and executing data-intensive parallel codes.  The 
core idea of MapReduce is to provide a simple programming 
model to support a large class of computational problems 
commonly encountered in Web search engine applications.  A 
MapReduce program requires a user to implement two 
functions:  
map:    (k1, v1)        list(k2, v2) 
reduce: (k2, list(v2))  v2 

The map() function takes an input key-value pair and outputs 
a list of intermediate key-value pairs.  The reduce() 
function accepts an intermediate key and a list of values 
associated with the key, and merges the values to produce a 
possibly smaller list of values.  A reduce operation typically 
produces either one or zero output values.  For example, to 
count the occurrences of each word in a large collection of 
documents, a user implements a map() function that takes as 
input a key-value pair (k1,v1), where k1 is the name of a 
document and v1 is a list of words in the document, and for 
each word within the document, produces a new key-value pair 
(k2,v2), where k2 is the word itself and v2 is 1 
(indicating a single encounter of that word).  The 
corresponding reduce() function takes as input 
(k2,list(v2)), where k2 is a particular word and 
list(v2) is the list of values (all 1’s) associated with k2, 
sums up the total number of occurrences of the word, and 
stores the count to disk. 



 
Figure 3. State transition of a potassium ion. 

 
 

Figure 2. Ion permeation through a channel. 

Fig. 1 illustrates the data flow of a typical MapReduce 
computation.  The input files to a MapReduce program are 
fetched from the Google File System (GFS) [19], a distributed 
file system developed and used internally by Google.  Compute 
nodes executing instances of the map() function produce 
intermediate key-value pairs that are stored on local disks.  
Compute nodes executing instances of the reduce() function 
use remote procedure calls (RPCs) to copy data to their local 
disks, and store output back into the GFS.  A GFS server, a 
map function, and a reduce function may execute on the same 
compute node, although Fig. 1 shows them executing on 
different nodes. 

 

The main advantage of MapReduce is that the details of 
parallel execution, such as data distribution and load balancing, 
are handled by the MapReduce library without user 
involvement.  For example, the counts of a particular word—
distributed across the compute nodes—are grouped together 
automatically on a single node and passed as an input 
parameter to the reduce() function, which then sums up the 
total count.  A user need only focus on the operations that are 
to be applied to the collected values, rather than on the 
operations of collecting the values. 

The programming model of MapReduce, though seemingly 
restrictive, has proven to be sufficiently flexible to support a 
large number of specific needs of Google’s daily operation, 
including the construction of the indexing system that produces 
the data structures used for the Google Web search service.  An 
average of 100,000 MapReduce jobs are executed on Google’s 
clusters every day, processing a total of more than 20 petabytes 
of data per day [14]. 

Attractive as it is, applying the programming model of 
MapReduce to the analysis of an MD trajectory poses a number 
of technical challenges:  How can we parallelize MD trajectory 
analysis in the first place?  How can we write parallel trajectory 
analysis code using the map() and reduce() functions?  
How can we specify trajectories of interest to MapReduce?  
How can we select and manipulate atoms, bonds, and other 
aspects of the molecular systems?  And how can we implement 
complex analysis codes that require multiple iterations of data 
reduction and synthesis (i.e., chained reduce operations) when 
MapReduce supports only one?  We describe how to parallelize 
trajectory analysis in the Section III and address the other 
problems in Section IV. 

III. PARALLEL MD TRAJECTORY ANALYSIS 
We first use an example to demonstrate the challenges of 

parallelizing traditional sequential MD analysis codes and then 
present an alternative data analysis model that is amenable to 
parallel processing and that is able to take advantage of the 
simple programming interface of MapReduce.  

A.  A Sample Application 
Fig. 2 shows a membrane protein that forms a channel 

(marked by a red rectangle) connecting two compartments (top 
and bottom).  The channel allows only potassium ions, depicted 
as light blue balls in Fig. 2, to permeate.  The objective of the 
analysis is to (1) count the total number of potassium ions that 
permeate through the channel from the bottom to the top or 
from the top to the bottom, (2) record the positions of each ion 
from the moment it enters the channel from the bottom (or top) 
to the moment it exits the channel at the top (or bottom), and 
(3) compute the time each ion takes to pass through the 
channel. 

Fig. 3 shows the finite state diagram of a potassium ion as it 
interacts with the channel.  Double circles represent possible 
initial states of an ion.  A permeation event takes place if and 
only if the ion transitions from state –1 to state 2 or from state 1 
to state –2. 

A reasonably efficient sequential analysis might be 
implemented as follows.  We access the frames of the 
trajectory one by one in ascending simulated physical time 
order (which is same as the frame number order).  We keep in 
memory the positions and states of all potassium ions of the 
previous frame.  For each new frame, we retrieve the 
coordinates of the potassium ions, update their states according 
to the finite state diagram of Fig. 3, and record the current 
simulated time and the coordinates of those ions that transition 
to or remain at states –1 or 1.  After all the frames are 
processed, we examine the memory-resident data structures to 
compute the required quantities and store the results. 

A large number of other analysis applications fall in the 
category of time-series analysis.  After all, an MD trajectory is, 
in essence, a gigantic time series that records the coordinates of 
all atoms over time.  Because the number of quantities to be 
analyzed (associated with atoms, bonds, or ions) is usually 
significantly smaller than the total number of atoms in a 



molecular system (e.g., the potassium ions account for fewer 
than 1% of all the atoms in our example), it is a natural choice 
to implement a sequential algorithm using memory-resident 
data structures to keep track of the updated states associated 
with the time series (because all the states fit in memory). 

Maintaining a correctly updated data structure, however, 
requires that the frames be accessed in a strictly ascending 
order.  Out-of-order processing of frames could result in 
incorrect results—for example, by disrupting the state 
transition flow dictated by Fig. 3.  An undesirable side effect of 
such a traditional sequential analysis method is that it is 
difficult, if not impossible, to parallelize the analysis codes due 
to the strong data dependence imposed by the order in which 
frames must be accessed. 

B. A New Data Analysis Model 
To take advantage of parallel processing, we introduce a 

new data analysis model that organizes an analysis task into 
three distinct steps, as shown in Fig. 4: 

1) Trajectory definition.  Instead of specifying the order of 
accessing trajectory frames, we declare the frames to be 
analyzed as a set—for example, by providing the indices of 
the first and last frame to be analyzed and a stride value that 
specifies how many frames should be skipped between frames.

2) Per-frame data acquisition and analysis.  After 
acquiring the atom coordinates and velocities from a particular 
frame, we extract quantities of interest or compute analysis 
results for that frame independently from operations 
performed on other frames or any prior results.

3) Cross-frame data analysis.  After all data of interest 
have been retrieved or computed from individual frames, we 
conduct cross-frame analysis for each time series 
independently, which may involve a number of iterations as 
indicated by the loop-back arrow in Fig. 4.

This model allows for parallel processing of an MD 
trajectory analysis in two stages.  In the first stage, the 
trajectory definition step and the per-frame data acquisition 
analysis step jointly create parallel I/O and computational tasks 
that can be distributed among processors.  Knowing what data 
(i.e., the frames) a user program needs rather than how the 
program wants to access the data (i.e., the order) provides an 
opportunity for out-of-order parallel I/O.  The only requirement 
is that all frames must be accessed at some point by some 
processor; the particular order of data access is no longer 
relevant.  Once a distributed consensus is reached regarding 
which processor is responsible for which frames, per-frame 
data acquisition and analysis can proceed in parallel without 
further communication.  In the second stage, cross-frame data 
analysis tasks associated with different time series are carried 
out by parallel processors simultaneously. 

The proposed model may appear to be inapplicable to those 
analysis scenarios where an algorithm depends on the results or 
states computed from previous frames to decide what to do 
with the current frame.  Our solution to this problem is to 
redesign an analysis to eliminate the strong data dependence 
between adjacent frames.  We first retrieve all potentially 
useful data in the per-frame data acquisition and analysis step, 
and later identify and ignore unused data in the cross-frame 
analysis step.  In our sample application, we can record the 

coordinates of all ions.  As we execute the state transition 
machine for each time series in the cross-frame data analysis 
step, we can identify the ions that have never permeated the 
channel and simply ignore them.  Because the quantity of data 
associated with useless coordinates is bounded by the number 
of ions (recall that they account for fewer than 1% of all 
atoms), the overhead of retrieving and storing the extra data is 
negligible.  In general, whether our model is applicable 
depends on the data access pattern and algorithmic design of an 
application. 

The real challenge is how to connect the two stages of 
analysis—that is, how to tie together the pieces of a time series 
extracted in the per-frame data acquisition and analysis step, 
and deliver the combined result to a single processor that is 
responsible for carrying out the cross-frame data analysis task 
for that particular time series.  To solve this problem, we make 
use of the programming interface of Google’s MapReduce. 

 
 

Figure 4. Casting an MD analysis into three steps that are amenable to 
parallel processing. 

 

C. MapReduce Revisited  
The conceptual jump to connect the data analysis model 

just described to MapReduce is the re-thinking of the usage of 
the key-value pairs.  A key, instead of being thought of as a 
numerical value or a word, should be thought of as a 
categorical identifier or name for a group of related values.  
For instance, we can use the unique integer identifier of a 
potassium ion as a key to identify all its time-varying 
coordinates extracted from a trajectory.  Additionally, a value 
associated with a key should carry a timestamp field (e.g., 
frame number or physical time) in addition to the quantities of 
interests (e.g., the coordinates of ions).  Because the order of 
access to trajectory frames is not specified in our model, the 
timestamp field is necessary for reconstructing a valid time 
series (in ascending time order).  Therefore, a key-value pair 
within an MD analysis takes the following form: 

(categorical name, (timestamp, quantities of interest))

Cast into the programming model of MapReduce, the per-
frame data analysis step corresponds to the map() function.  It 
retrieves or computes quantities of interest and produces key-
value pairs that contain categorical names and timestamps.  The 
cross-frame data analysis step corresponds to the reduce() 
function of MapReduce.  It processes and analyzes the value 
lists (i.e., time series) associated with individual keys (e.g., a 
particular ion).  It is the understanding and realization of such a 
connection that has prompted us to adopt the programming 
interface of MapReduce. 



IV. THE HIMACH FRAMEWORK 
To support the parallel data analysis model described in 

Section III, we have developed a parallel analysis framework 
called HiMach, which consists of an API that allows a user to 
write trajectory analysis programs sequentially, and a runtime 
that carries out the parallel execution of user programs 
automatically.  We have implemented HiMach using Python 
and pyMPI [20].  In our implementation, we treat multiple 
cores on a single chip as separate processing units as if they 
were independent processors.  We use the term processor 
generically in this paper to refer to either a single-core 
processor or a core on a multi-core chip. 

A.  The HiMach API  
The HiMach API allows users to (1) define a trajectory of 

interest, (2) carry out per-frame analysis, (3) implement cross-
frame analysis, (4) aggregate intermediate results when 
necessary, and (5) launch an analysis job and transfer control to 
the HiMach runtime. 

1) Trajectory Definition: The HiMach API provides a 
Python class called TrajectoryDescriptor for the user 
to define a trajectory of interest.  Except for the initialization 
method that performs basic sanity checks, this class has no 
other methods.

A TrajectoryDescriptor object records the 
characteristics of the trajectory of interest, using attributes 
shown in TABLE I.  Most of the attributes are self-explanatory 
except for usevmd, traj_am, and seltype.   

The usevmd attribute allows a user to specify whether 
VMD is used within their analysis programs.  We will explain 
how VMD is automatically loaded and how HiMach and user 
programs interact with VMD in Section IV-B3.   

The traj_am attribute allows a user to define a function 
that takes a frame number as input and outputs the name of the 
file to be accessed, the offset in the file, and the number of 
bytes to be read, thus overriding HiMach’s default file name of 
traj_dir/frameX, where X stands for the number of the 
frame being accessed.   

The seltype attribute specifies how a trajectory is 
accessed for the purpose of an analysis.  The default value of 
the seltype attribute is strided and the only other valid 
value is fixed.  Although most applications analyze only one 
trajectory at a time, a user may need to pair up two trajectories, 
or even group three or more trajectories for cross-trajectory 

analysis.  The HiMach API supports such analysis scenarios by 
allowing a user to create a contrail, a Python list that contains a 
number of TrajectoryDescriptor objects.  A contrail is 
an extension to the simple concept of a trajectory and may take 
one of the following forms: 

TABLE I. ATTRIBUTES OF A TrajectoryDescriptor OBJECT 
 

Attribute Usage
molfmt  Format of the molecular structure file 
molfname  Pathname to the molecular structure file 
traj_dir  Directory where frames are stored 
usevmd  Whether VMD is used 
traj_am  User-defined frame access method 
seltype  Frame access pattern 
begin  First frame to be accessed for a strided access
end  Last frame to be accessed for a strided access
stride  Number of frames to skip for strided access 
fixed_frameno  Frame number of a fixed access 

 

 
Figure 5. A contrail consisting of two trajectories. 

• Strided access mode: a single strided trajectory, 
defined by the begin, end, and stride attributes 

• Fixed access mode: a particular frame of a trajectory, 
defined by the fixed_frameno attribute 

• Hybrid access mode: one or more strided trajectories 
and one or more fixed trajectories 

For the hybrid access mode, we define the length of the 
contrail as the length of the longest strided trajectory.  The 
fixed_frameno frames from the fixed trajectories are 
logically replicated as many times as necessary to match the 
length of the contrail as shown in Fig. 5. 

2) Per-Step Data Acquisition: The HiMach API provides a 
class named Mapper as a template for a user to define the 
logic of per-step data acquisition.  A step comprises one frame 
from each of the trajectories that a user defines in a contrail, as 
shown in Fig. 5.  Note that we have dropped the use of term 
“per-frame data acquisition” defined in Section III-B in favor 
of “per-step data acquisition” to refer to the more general case 
of contrails.

The Mapper class consists of two methods, init() and 

map(),  both receiving the same input parameter, step, 
which is constructed and passed in by the HiMach runtime.  
The parameter step is a Python list whose entries, referred to 
as cursors, record the properties of the frames belonging to a 
step on a contrail.  The order of cursors in the step list is the 
same as the order of the TrajectoryDescriptor objects 
a user specifies in the corresponding contrail list. 

class Mapper(object): 
    def init(self, step): 
        return 
    def map(self, step): 
       raise NotImplementedError

The init() method allows a user to implement deferred 
runtime initialization of an analysis program.  It is called by the 
HiMach runtime once on each processor, before any frame is 
processed on that processor.  For example, a user may define a 
set of VMD atom selection objects within an init() method.  
Such statements are executable only if VMD has been 
initialized and the molecular structure file has been loaded, 
neither of which has taken place when a Mapper object is 



created.  Hence, it is impossible to combine such initialization 
with the default Python initialization routine __init__(); we 
must defer the initialization until HiMach has loaded VMD and 
the molecule structure file.  If a user does not override this 
method, it has no effect at all. 

The map() method, also implemented by a user, typically 
uses the VMD atom selection language to conduct RMSD 
alignment or select coordinates of the atoms, and produces key-
value pairs (in the form as specified in Section III-C) using the 
Python yield statement.1  The key-value pairs are saved on 
local disk transparently to the application by the HiMach 
runtime.  Besides simple data extraction, a map() method can 
also perform more compute-intensive processing of a frame 
and produce derived key-value pairs. 

3) Cross-Step Data Analysis: A class called Reducer
provides an interface for a user to implement cross-step data 
analysis.  The only method of this class is reduce(), with 
input parameters key and valuelist representing a 
categorical name and the associated list of values, 
respectively.  Both parameters are constructed and passed in 
by the HiMach runtime. 

If a user program needs to process the value lists as a time 
series, the first step in the reduce() method is to sort the list 
in ascending timestamp order.  Existing sequential algorithms 
can then be applied to the reconstructed time series. 

In the process of developing and deploying the HiMach 
framework, we noticed that a single-round reduce, as 
implemented by the original MapReduce model, is insufficient 
for many MD trajectory analyses, which instead require 
multiple rounds of data analysis and synthesis—for instance, 
summarization or reduction of previously computed analysis 
results. 

Based on this observation, we implemented a new feature 
within HiMach to allow a user program to conduct multiple 
rounds of reduce operations.  If a reduce() method yields 
key-value pairs instead of returning directly, it is an indication 
that another round of reduce operation is needed by the user 
code.  The newly yielded key-value pairs are saved by the 
HiMach runtime in the same manner as are the key-value pairs 
yielded by the map step.  To avoid mixing the two types of 
key-value pairs, the HiMach runtime keeps the new list of key-
value pairs separate from those generated by the map step or by 
previous rounds of reduce operations. 

4) Aggregation of Partial Results: When a map() or 
reduce() method yields a value for a particular key, the 
default action taken by the HiMach runtime is to append the 
value to a list associated with that key.  In certain cases, 
however, it is more efficient to aggregate the partial results in 
an application-specific way rather than simply keeping the 

                                                           
1 When a yield statement within a Python function is executed, the 

data object being yielded is returned to the caller of the function and control is 
transferred back to the caller. When the same function is called again, 
execution resumes from the statement immediately following yield. 

values in a list.  To support this kind of processing, the 
HiMach API provides an additional class called 
MapReducer, which exports an assemble() method. 

 
 

Figure 6. User-defined assemble functions. 
 

class Reducer(object): 
    def reduce(self, key, valuelist): 
        return 

As illustrated in Fig. 6, a user can optionally override the 
default assemble() method to instruct the HiMach runtime 
on how to aggregate (shown as assemblem in Fig 6) the key-
value pairs as they are produced by the map() method locally 
on the same processor, and how to aggregate (shown as 
assembler in Fig 6) the value lists associated with a 
particular key sent by another processor.  Whether the two 
types of aggregation are the same is application-dependent.  By 
aggregating the intermediate results, a user can reduce both the 
memory usage by each processor and the traffic on the 
communication network. 

HiMach’s support for dynamic data aggregation is an 
extension of the combiner function originally proposed by 
Google’s MapReduce [13].  The difference between the two is 
that the combiner function is called only after all the key-value 
pairs have been produced on a processor, while the 
assemble() method is called as lists become available.  In 
addition, no explicit data aggregation is supported on the 
receiving processors in MapReduce. 

5) Control Transfer to the HiMach Runtime: After the user 
defines the data (a contrail object) and the computation (a 
MapReducer object), the user then calls a HiMach API 
function named launch() to transfer the control to the 
HiMach runtime. 

B. The HiMach Runtime  
The HiMach runtime, as shown in Fig. 7, executes in 

parallel on all processors.  It implements all the machinery of 
executing user programs in parallel, which include 
(1) assigning tasks to processors, (2) issuing parallel I/O 
requests, (3) interacting with VMD, (4) storing and managing 
temporary results (key-value pairs), and (5) communicating 
and exchanging data among processors. 



1) Task Assignment: Two separate types of tasks are 
associated with a HiMach program: per-step data acquisition 
and analysis tasks (map tasks) and cross-step analysis tasks 
(reduce tasks).  The assignment of map tasks is independent 
from that of reduce tasks, and the assignment of reduce tasks 
for a particular round is independent from that of other rounds.  
Fig. 7 shows one map task and two rounds of reduce tasks 
assigned to a processor.

We assume that the amount of work associated with each 
map task—for example, the time spent retrieving and 
extracting data from a single frame or computing a quantity 
associated with a frame—is more or less the same.  We also 
assume that the cross-step analysis workload associated with 
each reduce task of the same round is roughly the same. 

In our current implementation, we use a simple block data 
decomposition algorithm to assign tasks to processors.  For 
map tasks, we divide a list of trajectory frames evenly among 
all processors, each responsible for executing the map tasks 
associated with a contiguous set of frames.  No interprocessor 
communication is needed for assigning map tasks.  To assign 
reduce tasks, we conduct one round of a global collective 
operation (i.e., with MPI_Allgather) to obtain the complete 
list of intermediate keys to reduce.  The keys are treated as if 
they were elements of a contiguous array.  We apply the same 
block data decomposition algorithm to partition these keys 
among processors.  Note that to avoid a potential performance 
bottleneck, we do not use a single master node to assign map or 
reduce tasks. 

2) Parallel I/O: Parallel I/O takes place after the map tasks 
have been assigned to processors.  Since the frames to be 
accessed by each processor have already been determined, no 
communication is required to coordinate I/O.  We assume that 
trajectory frames are organized in such a way—for example, 
as a sequence of megabyte-sized files—that they are amenable 
to efficient parallel I/O if a sufficiently large number of I/O 
requests are outstanding.  At runtime, HiMach issues file read 
requests on behalf of a user program and passes the data of 
each frame to the map() method as an input parameter.  The 
write operation, which outputs the final results of an analysis, 
is handled by the user program itself.  Since a user program 
cannot select on which processor a map() or reduce()
function is executed, it must create or open files on a global 

file system such as a network file system (NFS) or a parallel 
file system to write out the results.  

 
 
Figure 7. Overview of the HiMach runtime on a single processor.  The ovals 
represent a map task and two rounds of reduce tasks executing on the same 
processor. 

3) Interaction with VMD: We use VMD to allow user 
programs to manipulate and conduct computation on atoms, 
bonds, and other molecular structures.  We have not 
parallelized VMD; instead, we support parallelism by running 
and interacting with an instance of VMD on each processor 
using the following method.

When a user program indicates that it needs to use VMD, 
the HiMach runtime first automatically starts a local instance of 
VMD on each processor and loads the appropriate molecular 
structure file.  Next, it calls a VMD built-in function named 
molecule.dupframe() to create a placeholder frame 
buffer for the molecule structure.  Then, the HiMach runtime 
calls the VMD vmdnumpy.positions() function to obtain 
a handle to the newly created internal frame buffer.  This buffer 
handle becomes the interface between HiMach and VMD. 

At this point, HiMach calls the user-defined init() 
method to perform deferred initialization and then starts 
reading trajectory frames on behalf of the user program.  Once 
a frame is retrieved, the HiMach runtime copies the coordinates 
of the atoms to the buffer handle, overwriting the coordinates 
of the previously processed frame. 

The frame number, the VMD frame buffer handle, and the 
molecule ID (generated automatically by VMD) are passed to 
the user-defined map() method as input parameters.  Within 
the map() method, all user-issued VMD commands operate 
on the coordinates of the new frame.  Thus, the loading of new 
atom coordinates and the updating of the input parameter list 
are handled automatically by the HiMach runtime. 

4) Key-value data management: We have observed that 
the Python interpreter uses a large amount of memory to keep 
track of long value lists, resulting in memory thrashing of both 
user programs and the HiMach runtime.  As a remedy to this 
problem and also as a measure to deal with long MD 
trajectories (which will exhaust the main memory on each 
processor regardless of the behavior of a Python interpreter), 
as well as to support applications that retrieve a large 
percentage of input frame data (instead of the 1% that our 
sample application uses), we use an out-of-core data 
management scheme to keep track of key-value pairs. 

We set an internal counter to record the number of key-
value pairs that have been yielded.  Once the counter reaches a 
preset, tunable threshold, the values associated with the keys 
are serialized and output to temporary files on local disk.  
Memory space previously used by the value objects is released 
and the internal counter is reset to 0.  The management of the 
temporary files is transparent to the user program.  They are 
given unique names by the HiMach runtime and are associated 
with the memory-resident partial value lists.  When inter-
processor communication takes place, the temporary 
serialization files are exchanged among processors directly.  
The HiMach runtimes on the receiving processors deserialize 
the values from the files and reconstitute the lists for the 
respective keys without user involvement. 

5) Communication: Unlike Google’s MapReduce, which 
uses remote procedure calls (RPCs) to copy data from other 
processors, the HiMach runtime uses MPI to exchange data 



among processors.  The advantage is that HiMach avoids the 
potential performance bottleneck associated with a single 
master node, which has to keep track of the progress of each 
process and inform processes when to start RPC copies.  The 
disadvantage is that HiMach does not provide the fault 
tolerance offered by MapReduce: if one compute node goes 
down during an analysis execution, the HiMach user program 
must be re-executed from the beginning.

Because the amount of data (value lists) associated with the 
keys from a very long trajectory may approach or even exceed 
the main memory size on each processor, it is inefficient, and 
sometimes impossible, to post all the MPI receives 
simultaneously.  We have therefore devised a more regulated 
communication protocol to exchange data among MPI 
processes, which takes place in p  1 rounds where p is the 
number of MPI processes.  At round k, process i sends data (if 
any) to process (i + k + 1) mod p and receives data (if any) 
from process (i  k  1) mod p. 

Fig. 8 shows the conceptual model of the communication 
protocol.  The tick-marks on the circles denote MPI ranks.  The 
inner circle represents the senders and the outer circle the 
receivers.  Now fix the outer circle and dial the inner circle 
clockwise one tick-mark at a time.  We obtain p  1 different 
alignment configurations (ignoring the case of a matching 
alignment that represents self-communication).  Each of the 
inner-outer circle alignments defines a unique round of 
communication in which each MPI process on the inner circle 
sends to the corresponding MPI process on the outer circle the 
values associated with the keys that the outer process is 
responsible for reducing.  For example, in the configuration 
shown in Fig. 8, process 0 sends data to process 1 and receives 
data from process p  1.  Each MPI process proceeds to the 
next round of communication only after it finishes the current 
round.  In the end, every process communicates to every other 
process in the system.  The multiple rounds of pair-wise 
communication are designed to control the amount of data 
pushed to the communication network and to bound the 
memory usage of both senders and receivers. 

In summary, the HiMach framework allows users to 
implement an MD trajectory analysis using a MapReduce-style 

interface, make use of the analytical capability of VMD, 
perform data aggregation when necessary, and conduct 
multiple rounds of data analysis and synthesis. 

 
 
 
Figure 8. Data exchange between MPI processes.  The inner circle represents 
the senders and the outer circle the receivers.  Each (tick-mark) alignment 
configuration defines a round of communication. 

 
 

 
Figure 9. An electron density map.  The green contours are associated with 
potassium ions, red contours with water molecules, and grey-blue contours 
with the atoms of proteins.  

V. APPLICATIONS 
We have so far presented the HiMach framework in an 

abstract setting, referring only briefly to the needs of 
applications.  This section provides three real-world examples 
to illustrate the programmability and flexibility of the HiMach 
framework.  For the purpose of this paper, we provide only an 
overview of the example applications and an outline of the key 
algorithmic techniques. 

A. Electron Density Map Construction  
An electron density map defines a frame’s 3D spatial 

(probability) distribution of electrons, thus illustrating the 
atomic structure of proteins and other macromolecules.  While 
electron density maps are generally obtained through physical 
experiments such as X-ray diffraction measurements or 
electron microscopy reconstructions, MD simulations have 
introduced a new way of constructing electron density maps, as 
shown in Fig. 9.  The iso-electron-density contours, shown as 
chicken-wire meshes, approximately represent the locations of 
potassium ions and water molecules within a conduction 
channel outlined by the rectangular box.  The electron density 
map of an MD trajectory is defined as the average of the 
electron density maps associated with individual frames. 

We design a HiMach analysis algorithm as follows: 
(1) write a stand-alone function that computes the electron 
density map for a single frame (the specifics are beyond the 
scope of this paper); (2) define a map() method that calls that 
function and yields (’electron map’, (emap, 
fcount)) as the output key-value pair, where emap (a 
Python Numpy array) records the electron map of a single 
frame, and fcount, which is initialized to 1, records how 
many frames have contributed to the resulting emap; 
(3) override the assemble() method of the MapReducer 
object to sum up partial results of emap and fcount (to 
minimize memory usage on each processor and enable parallel 
summation of partial results); and (4) define a reduce() 



 
 

method that divides the final accumulated electron density map 
(emap) by the number of frames processed (fcount). 

Algorithmically, this program falls into the so-called 
“embarrassingly parallel” category.  It does not even need to 
perform cross-step data analysis on time series.  Nevertheless, 
it represents an effective and commonly-used method for MD 
trajectory analysis. 

B. Ion Permeation Reimplemented  
The reimplementation of the analysis of ion permeation 

through a channel is more complicated than the example in the 
previous section.  The approach to achieving parallelism, as 
outlined in Section III-A, is to retrieve all coordinates of ions, 
and to identify and ignore the useless data later. 

We implement a map() method to extract all the 
coordinates of potassium ions and yield (ion_id, 
(t,x,y,z)), where ion_id is an ion identifier, t is the 
physical time of trajectory frame, and x, y, and z are the 
coordinates of the ion within a trajectory frame.  The 
reduce() method, responsible for processing a time series 
associated with the coordinates of each potassium ion, first 
reorders the value list using the physical time t as the sorting 
key, and then implements the state transition diagram shown in 
Fig. 3. 

Such an algorithmic design may seem counterintuitive, 
since we have to do more—and potentially useless—work in 
order to carry out the analysis more efficiently.  But as noted 
above, the potassium ions account for only a small percentage 
of the atoms of a molecular system; in exchange for a small 
amount of additional data retrieval and processing, we are able 
to parallelize and speed up the entire computation. 

C.  All-to-All RMSD within a Sliding Window  
The root mean squared deviation (RMSD) is a measure that 

quantifies the structural “proximity” between two frames with 
respect to a set of atoms.  It is defined as 
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between the positions of the atom a in frame i and j. 
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The goal of the analysis is to compute the mean value of all 
pair-wise RMSD values within a fixed-size sliding window of 

w consecutive frames, which slides forward in time by a 
progression size of s frames at a time.  The user-specified 
atoms involved in the RMSD calculation are the alpha carbons 
on the main chain of a protein, which account for fewer than 
1% of the atoms in the system. 

Fig. 10(a) shows the symmetric RMSD matrix for an MD 
trajectory with n frames.  Each triangle, for example the one 
labeled abc, represents a sliding window.  All matrix entries 
(RMSD values) within a triangle are needed by the 
corresponding sliding window to compute the statistics 
correctly.  Naive parallelization of this calculation by assigning 
each window to a processor (whether using HiMach or MPI 
directly) would result in inefficient and redundant data accesses 
and computations due to the overlaps between the sliding 
windows. 

The HiMach algorithm we developed reads each frame 
once and computes the RMSD of each distinct (i, j) pair once.  
The key idea is to convert the computation associated with a 
dynamically sliding window to that of a fixed set: all entries in 
the “serrated” band of the RMSD matrix, as shown in 
Fig. 10(b), are computed first regardless of how many sliding 
windows overlap on the entries.  The RMSD values are then 
distributed to the associated sliding windows for statistical 
calculations. 

We partition the workload of computing the “serrated” 
band among processors (more or less) evenly as shown by the 
45-degree partition lines in Fig. 10(c).  Each computational 
task—identified in Fig. 10(c) as a patch bounded by the 
diagonal of the matrix, two adjacent partition lines, and the 
“serrated” edge—is assigned a unique task ID, starting from 0 
at the upper left corner and increasing monotonically towards 
the lower right corner of the RMSD matrix.  For example, 
task 1 corresponds to a polygonal patch labeled by mnbopqc. 

The task IDs provide the bridge that connects the per-step 
data analysis step with the cross-step analysis step.  When a 
map() method receives an input frame i from the HiMach 
runtime, it extracts the atomic positions of interest, computes 
the IDs of the tasks whose patches intersect row i or column i, 
and yields a sequence of key-value pairs, using the computed 
task ids as the keys, and the frame number i and the atomic 
positions as the value.  That is, those task IDs need the set of 
atomic positions from frame i to compute the matrix entries 
within their respective patches. 

 
 

Figure 10. All-to-all RMSD within a sliding window. 

(a) A symmetric RMSD matrix. (b) A “serrated” band.                 (c) Workload partitioning.



We conduct two rounds of reductions.  In the first round, 
each reduce task computes the RMSD values within its patch, 
identifies the sliding windows to which each of its matrix 
entries contributes, and yields key-value pairs, using the sliding 
window IDs as the keys and the RMSD values as the values.  
In the second round, each reduce task computes the mean of 
the input RMSD values associated with each sliding window. 

Although data replication occurs in both rounds of reduce 
operations, neither represent a scalability bottleneck.  In the 
first round, some atomic positions are replicated (distributed) 
among multiple reduce tasks that compute matrix band entries.  
The overhead is negligible since (1) it only occurs when frames 
near the partition lines are processed; (2) the quantity of data 
involved is small (fewer than 1% of all atoms); and (3) the 
replication ratio drops when very long trajectories are involved.  
In the second round, the RMSD values are replicated 
(distributed) among multiple reduce tasks that calculate 
statistics associated with the sliding windows.  The cost, 
bounded by w/s, where w is the size of the sliding window 
and s is the progression size, is not affected by the number of 
processors or the length of a trajectory. 

The three examples, though constituting only a small 
selection of real-world applications, capture the complexities of 
a large variety of analysis scenarios, ranging from the 
“embarrassingly parallel” to the moderately complex to the 
more sophisticated. 

VI. PERFORMANCE EVALUATION 
We use two HiMach analysis programs presented in 

Section V—the tracking of ion permeation through a channel 
and the computation of a sliding-window RMSD—to drive the 
performance evaluation of our framework.  We refer to the two 
analyses as the permeation program and the RMSD program, 
respectively.  Note that our benchmarking implementation of 
the ion permeation analysis is slightly different from what we 
described in Section V-B.  Instead of generating one time series 
for each individual ion, the permeation program generates a 
time series of vectors, each of which records the positions of all 
ions within a frame.  In other words, one reduce task processes 
all ions. 

Our performance data were obtained from running the 
permeation and RMSD programs on a commodity Linux 
cluster with 128 compute nodes.  Each node has two Intel Xeon 
2.66 GHz quad-core processors, 16 GB of memory that is 
shared by all 8 processor cores, and two 250 GB SATA disks 

that are organized in a RAID 1 (mirrored) configuration.  The 
operating system running on the nodes is CentOS 4.6 with a 
Linux kernel version of 2.6.22.  The nodes are interconnected 
via a Gigabit Ethernet connection.  All nodes have access to a 
NFS directory exported by a Sun x4500 storage server, which 
has a capacity of 40 TB.  Although the NFS directory has the 
capacity to store terabyte MD trajectories, our experiments 
show that the peak read bandwidth from the NFS server 
flattens out at around 300 MB/s for our applications. 

TABLE II.  STRONG SCALING OF THE PERMEATION PROGRAM 

 

Nodes 1 1 1 2 4 8 16 32 64 128 

Cores 1 2 4 8 16 32 64 128 256 512 

Frames/core 83750 41875 20938 10469 5234 2617 1309 654 327 164 

Total time(s) 17792 11740 9458 4828 2495 1308 691 389 233 183 

  Map time (s) 17767 11716 9435 4804 2471 1284 665 362 202 134 

  Reduce time(s) 25 24 23 24 24 24 26 27 31 49 

Map throughput (MB/s) 8.9 13.6 16.6 32.5 63.3 119.8 225.7 414.0 695.1 1061.6 

Parallel efficiency (node) n/a n/a 100% 98% 95% 90% 86% 76% 64% 40% 

 

To achieve better I/O performance, we installed a 
PVFS2 [21, 22] parallel file system on 64 of the 128 compute 
nodes and used PVFS2 to store and retrieve trajectory frames.  
To alleviate resource contention, we used only 4 cores per node 
for the analysis applications in our experiments, leaving the 
remaining 4 cores to run the PVFS2 servers.  Although the 64-
node PVFS2 file system does not match the performance of 
NFS when a single core is used to run applications (8.9 MB/s 
on PVFS2 vs. 38 MB/s on NFS), PVFS2 outperforms NFS by 
up to a factor of 4 when a large number of cores issue parallel 
I/O requests simultaneously. 

A. Strong Scalability  
In this set of experiments, we fix the MD trajectory to be 

analyzed and increase the number of cores that execute a 
HiMach program.  The objective is to assess how much faster a 
HiMach program can run while more resources (compute 
nodes) are added to solve a fixed-size problem. 

The MD trajectory analyzed by the permeation program 
consists of 83,750 frames, each 1.97 MB in size.  The total size 
of the trajectory is 154 GB.  The frames are organized in files 
of size 67.2 MB, each of which contains 34 consecutive 
frames. 

TABLE II shows the performance of the permeation 
program.  As we increase the number of cores from 1 to 512, 
the running time decreases from about 5 hours to 3.5 minutes—
an improvement of nearly 2 orders of magnitude.  The 
permeation program, like many other trajectory analysis codes, 
is I/O bound.  The time spent in the map() function, which is 
responsible for retrieving and extracting data from a frame, 
dominates the time spent in executing the reduce() 
function, especially on a small number of cores.  Thus, the 
main performance gain comes from the improvement of map 
throughput, which increases from 8.9 MB/s on 1 core to 1061.6 
MB/s on 512 cores.  The increase of map throughput, however, 
is non-linear.  At the low end, when we increase the number of 



cores from 1 to 2 to 4, the sustained map throughput rate does 
not improve linearly (the suboptimal performance may be 
caused by resource contention on a single compute node).  As 
we increase the number of cores from 4 to 128, using more and 
more compute nodes, the performance improves almost 
linearly.  The parallel efficiency with respect to the 
performance of 4 cores on a single node is above 75% until we 
use 64 nodes.  At this point, the performance improvement 
slows down, as we approach the upper limit of sustained 
parallel read bandwidth of the PVFS2 file system. 

The MD trajectory analyzed by the RMSD program 
consists of 110,740 frames, each with a size of 823 KB.  The 
total size of the trajectory is 85 GB.  Every 82 consecutive 
frames are organized in a file of size 67.5 MB. 

The performance characteristics of the RMSD program, 
shown in TABLE III, are similar to those of the permeation 
program.  As in the case of the permeation program, the 
running time of the RMSD program improves from about 
3.5 hours to 2 minutes as we increase the number of cores used 
from 1 to 512.  The reduce() function of the RMSD 
program, unlike that of the permeation program, is executed in 
parallel on all the cores, as explained in Section V-C.  The 
reported time for the reduce() function also includes the 
overhead of inter-processor communication.  TABLE III also 
shows that the time spent in the reduce() function decreases 
proportionally to the number of cores used until 512 cores, at 
which point the cost of communication overtakes the execution 
time of the reduce() function and becomes the dominant 
factor.  In fact, the reduce time for 512 cores is longer than that 
for 256 cores.  The degradation in performance suggests that 
the communication-to-computation ratio (i.e., the ratio between 
the width of an inter-task partition edge and the area of a patch) 
for this problem on 512 cores has become too large to be 
efficient. 

B. Weak Scalability 
In this set of experiments, we fix the amount of work each 

core carries out and increase both the length of a trajectory and 
the number of cores for executing a HiMach program.  The 
goal is to assess how the HiMach framework will perform 
when we add more resources to solve a proportionally larger 
problem.  We created a synthetic data set by replicating the 
RMSD trajectory 12 times to generate a one-terabyte data set.  

Our experiment started from 4 cores analyzing an 87 GB 
trajectory, and scaled to 512 cores analyzing the full 1 TB 

synthetic trajectory.  In the ideal case, the running time of each 
experiment would be the same.  TABLE IV shows the weak 
scaling performance of the RMSD program.  Note that in all 
experiments each core processes 2,400 frames.  The per-node 
parallel efficiency exceeds 85% until 512 cores and then drops 
to 66% due to sub-linear improvement in map throughput and 
extra overhead in the reduce function.  Nevertheless, the 
running time of carrying out the analysis of a one-terabyte 
trajectory is only 15 minutes on 512 cores. 

Assuming that an MD simulation is capable of simulating 
some biochemical system at a rate of 1 millisecond per day—
well beyond the capability of present day computer systems—
and also assuming that the simulation outputs frames every 
10 picoseconds (1 picosecond = 10-12 second), then a total of 
100 million frames will be generated a day, or roughly 
1 million frames every 15 minutes.  Given that the analysis 
throughput rate of the RMSD program on 512 cores is in the 
same range as the hypothetical trajectory frame generation rate, 
we believe that HiMach has the scalability and performance to 
support data analysis of millisecond-scale MD simulations. 

 
TABLE III. STRONG SCALING OF THE RMSD PROGRAM  

 

Nodes 1 1 1 2 4 8 16 32 64 128 

Cores 1 2 4 8 16 32 64 128 256 512 

Frames/core 110740 55370 27685 13843 6921 3461 1730 865 433 216 

Total time(s) 12332 8564 6443 3383 1717 897 452 235 129 104 

  Map time (s) 8166 6398 5113 2575 1307 691 350 183 98 64 

  Reduce time(s) 4166 2165 1330 808 410 205 102 52 31 40 

Map throughput (MB/s) 10.6 13.6 17.0 33.8 66.5 125.8 248.5 474.6 884.6 1351.3 

Parallel efficiency (node) n/a n/a 100% 99% 98% 92% 91% 87% 78% 45% 

 

VII. SUMMARY 
Using the end-to-end time to solution—be it discovery, 

understanding, or intuition—as the metric of success of 
computer-based molecular modeling, we must take into 
account the time of post-simulation analysis that converts data 
to human-interpretable results in addition to the time spent in 
an MD simulation.  Because sequential analysis methods are 
unable to deliver the necessary computational power, memory 
capacity, and I/O bandwidth to keep pace with the rapid 
development of parallel MD simulations, we must seek a more 
scalable solution. 

In this paper, we have demonstrated—for the first time, we 
believe—how to build a scalable and flexible parallel 
framework to deal with massive MD trajectories, by combining 
and extending the strengths of an emerging enterprise 
computing technology (Google’s MapReduce) and an existing 
sequential analysis tool (UIUC’s VMD). 

Even though HiMach, our prototype system, is developed 
specifically for MD trajectory analysis, its design principles 
and implementation techniques are potentially applicable to 
data analysis for other types of simulations, including 
gravitational simulations in astrophysics, particle simulations in 
plasma physics, smooth particle hydrodynamics simulations in 
fluid dynamics, and unstructured mesh-based PDE simulations. 
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