
A Scalable Parallel Framework for Analyzing
Terascale Molecular Dynamics Simulation

Trajectories
Tiankai Tu, Charles A. Rendleman, David W. Borhani, Ron O. Dror, Justin Gullingsrud, Morten Ø. Jensen,

John L. Klepeis, Paul Maragakis, Patrick Miller, Kate A. Stafford, David E. Shaw*
D. E. Shaw Research, New York, NY 10036 USA

Abstract—As parallel algorithms and architectures drive the
longest molecular dynamics (MD) simulations towards the
millisecond scale, traditional sequential post-simulation data
analysis methods are becoming increasingly untenable. Inspired
by the programming interface of Google’s MapReduce, we have
built a new parallel analysis framework called HiMach, which
allows users to write trajectory analysis programs sequentially,
and carries out the parallel execution of the programs
automatically. We introduce (1) a new MD trajectory data
analysis model that is amenable to parallel processing, (2) a new
interface for defining trajectories to be analyzed, (3) a novel
method to make use of an existing sequential analysis tool called
VMD, and (4) an extension to the original MapReduce model to
support multiple rounds of analysis. Performance evaluations on
up to 512 cores demonstrate the efficiency and scalability of the
HiMach framework on a Linux cluster.

I. INTRODUCTION
One of the challenging goals of high-performance

molecular dynamics (MD) simulations is to model important
biological processes that occur on the millisecond time scale—
about two orders of magnitude beyond the duration of the
longest current MD simulations. While great effort has gone
into the design, implementation, and performance optimization
of scalable parallel MD simulations using both software [1–7]
and hardware [8–11] techniques, the analysis of the MD
trajectories (simulation output data sets) has taken a back seat
when it comes to scalability and performance, and is usually
relegated to sequential processing.

Efficient and effective though they are for manipulating
relatively short trajectories, sequential analysis tools lack the
necessary scalability and performance to efficiently handle
very long MD trajectories with millions of frames. Today’s
MD codes are capable of simulating molecular systems with
tens of thousands of atoms at a speed of roughly a hundred
nanoseconds per day, producing MD trajectories on the order
of tens of gigabytes—a scale that already stresses the
computational, memory, and I/O capabilities of existing
sequential analysis tools. As petascale computers [12] and new
special-purpose MD machines [11] become available,
trajectories of unprecedented length will be generated, and the
pressure on post-simulation data analysis tools will continue to
mount.

The widening gap between highly scalable parallel MD

simulations and unscalable sequential data analysis methods
poses a serious analytics challenge. Left unaddressed, it would
hamper scientists’ ability to fully understand and interpret
simulation results, thus defeating the purpose of developing
faster and more scalable MD simulations.

Our research focuses on how to bridge this gap and provide
a new analytical tool to deal with massive MD trajectories. At
first glance, it might appear that implementing a predefined set
of analysis functions within an efficient parallel program could
solve the problem. But because the analysis needs of end users
are highly varied, it is impossible to foresee all the required
functionality and develop a one-size-fits-all parallel analysis
program. On the other hand, passing along all responsibility to
the end users is not a feasible solution either. Researchers who
study MD trajectories are typically trained in biology,
chemistry, physics, or medicine, and may not be experts in
managing large data sets or writing parallel analysis software.

Inspired by Google’s MapReduce framework [13, 14], we
propose a new approach to this challenge. Our main idea is to
provide a simple, MapReduce-style programming interface for
users to write sequential MD trajectory analysis codes, which
are then executed in parallel without user involvement. We
have implemented our methodology within a new parallel
analysis framework called HiMach. User programs interact
with HiMach through an application programming interface,
the HiMach API, to (1) define the MD trajectories to be
analyzed, (2) specify the procedure of data acquisition,
(3) implement analysis functions on the retrieved data, and
(4) aggregate intermediate results when necessary.
Computational chemists within our group have already used
the HiMach API to develop a variety of different analyses,
including the construction of electron density maps, the
tracking of ions that permeate through a channel, and the
calculation of self-diffusion coefficients.

The machinery of automatic parallel execution of user
programs is implemented within the HiMach runtime, which is
responsible for assigning tasks to processors, issuing I/O
requests, interacting with VMD [15] (a sequential MD
trajectory analysis tool developed by the Theoretical and
Computational Biophysics group at the University of Illinois at
Urbana-Champaign), storing and managing intermediate
results, and communicating and exchanging data among
processors. To make the programming model of MapReduce
amenable to MD trajectory analysis, we introduce (1) a new
MD trajectory data analysis model that is suitable for parallel
processing, (2) a new interface for defining trajectories to be

*David E. Shaw is also with the Center for Computational Biology and
Bioinformatics, Columbia University, New York, NY 10032. E-mail
correspondence: David.Shaw@DEShawResearch.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

analyzed, (3) a novel method to make use of VMD, and (4) an
extension to MapReduce to support multiple rounds of analysis
(i.e., chained reduce operations).

We assessed the efficiency of our framework on a
commodity Linux cluster using two HiMach-based trajectory
analysis programs. Both programs achieved nearly two orders
of magnitude speedup when going from 1 core to 512 cores.
Furthermore, we were able to perform a complex analysis on a
one-terabyte trajectory in 15 minutes on 512 cores.

To the best of our knowledge, no existing MD trajectory
analysis tools provide parallel execution capabilities, with the
exception of VMD, which executes multi-threaded codes for a
limited number of computationally intensive analysis routines
such as finding neighboring pairs of atoms. We believe
HiMach to be the first framework to support general-purpose
parallel analysis of very long MD trajectories.

II. BACKGROUND
An MD simulation models the motion of atoms within a

molecular system. Given a set of initial conditions, an MD
simulation computes a molecular system’s state—the positions
and velocities of the constituent atoms—over a sequence of
discretized time steps. Typically, the duration of a time step is
limited to no more than a few femtoseconds (1 femtosecond =
10 15 seconds) in order to resolve the highest frequency modes
in the molecular system. At each time step, the force exerted
on each atom is computed and a new state is calculated by
numerically integrating Newton’s laws of motion. At certain
user-prescribed intervals, for example, every 104 femtoseconds
(i.e., 10 picoseconds), snapshots of the state, called frames, are
stored to disk. The set of all output frames constitutes the
trajectory of an MD simulation. A trajectory frame consists of
a collection of records (of positions and velocities), each
corresponding to an atom. The ordering of the records in a
trajectory frame corresponds to the ordering of atoms in a
molecular structure file (e.g., a Protein Data Bank (PDB)
file [16]), which specifies the types and initial positions of
individual atoms as well as their bond connectivity.

An MD trajectory analysis program usually takes a
molecular structure file and a sequence of trajectory frames as
input, conducts an analysis calculation, and outputs the
quantities of interest. An analysis program can be either
generic or special purpose. Generic analyses—for example, the
computation of properties such as the kinetic energy or center-
of-mass velocity of a set of atoms, or the bond lengths between
pairs of atoms—are used mostly for exploratory purposes.
Special-purpose analysis programs, often devised and
implemented by domain experts, aim to further quantify results
or stimulate new insights.

A. Visual Molecular Dynamics (VMD)
Visual Molecular Dynamics (VMD) [15] is a widely used

MD trajectory analysis tool. A user loads an MD trajectory
into VMD and issues commands through either the
commandline or the graphical user interface to manipulate the
atoms, which are rendered accordingly on a computer display.
In addition, a user can also write analysis scripts using Tcl or
Python via VMD’s scripting language interface. VMD
executes these scripts in text mode without user intervention.

For very long trajectories that do not fit into the main memory,
a user may write analysis scripts to implement external
memory algorithms [17] that explicitly store and retrieve
temporary results to and from disk.

Figure 1. Data flow of a MapReduce computation.

B. MapReduce
Google’s MapReduce [13, 14] and its open-source

implementation Hadoop [18] advocate a new way of
developing and executing data-intensive parallel codes. The
core idea of MapReduce is to provide a simple programming
model to support a large class of computational problems
commonly encountered in Web search engine applications. A
MapReduce program requires a user to implement two
functions:
map: (k1, v1) list(k2, v2)
reduce: (k2, list(v2)) v2

The map() function takes an input key-value pair and outputs
a list of intermediate key-value pairs. The reduce()
function accepts an intermediate key and a list of values
associated with the key, and merges the values to produce a
possibly smaller list of values. A reduce operation typically
produces either one or zero output values. For example, to
count the occurrences of each word in a large collection of
documents, a user implements a map() function that takes as
input a key-value pair (k1,v1), where k1 is the name of a
document and v1 is a list of words in the document, and for
each word within the document, produces a new key-value pair
(k2,v2), where k2 is the word itself and v2 is 1
(indicating a single encounter of that word). The
corresponding reduce() function takes as input
(k2,list(v2)), where k2 is a particular word and
list(v2) is the list of values (all 1’s) associated with k2,
sums up the total number of occurrences of the word, and
stores the count to disk.

Figure 3. State transition of a potassium ion.

Figure 2. Ion permeation through a channel.

Fig. 1 illustrates the data flow of a typical MapReduce
computation. The input files to a MapReduce program are
fetched from the Google File System (GFS) [19], a distributed
file system developed and used internally by Google. Compute
nodes executing instances of the map() function produce
intermediate key-value pairs that are stored on local disks.
Compute nodes executing instances of the reduce() function
use remote procedure calls (RPCs) to copy data to their local
disks, and store output back into the GFS. A GFS server, a
map function, and a reduce function may execute on the same
compute node, although Fig. 1 shows them executing on
different nodes.

The main advantage of MapReduce is that the details of
parallel execution, such as data distribution and load balancing,
are handled by the MapReduce library without user
involvement. For example, the counts of a particular word—
distributed across the compute nodes—are grouped together
automatically on a single node and passed as an input
parameter to the reduce() function, which then sums up the
total count. A user need only focus on the operations that are
to be applied to the collected values, rather than on the
operations of collecting the values.

The programming model of MapReduce, though seemingly
restrictive, has proven to be sufficiently flexible to support a
large number of specific needs of Google’s daily operation,
including the construction of the indexing system that produces
the data structures used for the Google Web search service. An
average of 100,000 MapReduce jobs are executed on Google’s
clusters every day, processing a total of more than 20 petabytes
of data per day [14].

Attractive as it is, applying the programming model of
MapReduce to the analysis of an MD trajectory poses a number
of technical challenges: How can we parallelize MD trajectory
analysis in the first place? How can we write parallel trajectory
analysis code using the map() and reduce() functions?
How can we specify trajectories of interest to MapReduce?
How can we select and manipulate atoms, bonds, and other
aspects of the molecular systems? And how can we implement
complex analysis codes that require multiple iterations of data
reduction and synthesis (i.e., chained reduce operations) when
MapReduce supports only one? We describe how to parallelize
trajectory analysis in the Section III and address the other
problems in Section IV.

III. PARALLEL MD TRAJECTORY ANALYSIS
We first use an example to demonstrate the challenges of

parallelizing traditional sequential MD analysis codes and then
present an alternative data analysis model that is amenable to
parallel processing and that is able to take advantage of the
simple programming interface of MapReduce.

A. A Sample Application
Fig. 2 shows a membrane protein that forms a channel

(marked by a red rectangle) connecting two compartments (top
and bottom). The channel allows only potassium ions, depicted
as light blue balls in Fig. 2, to permeate. The objective of the
analysis is to (1) count the total number of potassium ions that
permeate through the channel from the bottom to the top or
from the top to the bottom, (2) record the positions of each ion
from the moment it enters the channel from the bottom (or top)
to the moment it exits the channel at the top (or bottom), and
(3) compute the time each ion takes to pass through the
channel.

Fig. 3 shows the finite state diagram of a potassium ion as it
interacts with the channel. Double circles represent possible
initial states of an ion. A permeation event takes place if and
only if the ion transitions from state –1 to state 2 or from state 1
to state –2.

A reasonably efficient sequential analysis might be
implemented as follows. We access the frames of the
trajectory one by one in ascending simulated physical time
order (which is same as the frame number order). We keep in
memory the positions and states of all potassium ions of the
previous frame. For each new frame, we retrieve the
coordinates of the potassium ions, update their states according
to the finite state diagram of Fig. 3, and record the current
simulated time and the coordinates of those ions that transition
to or remain at states –1 or 1. After all the frames are
processed, we examine the memory-resident data structures to
compute the required quantities and store the results.

A large number of other analysis applications fall in the
category of time-series analysis. After all, an MD trajectory is,
in essence, a gigantic time series that records the coordinates of
all atoms over time. Because the number of quantities to be
analyzed (associated with atoms, bonds, or ions) is usually
significantly smaller than the total number of atoms in a

molecular system (e.g., the potassium ions account for fewer
than 1% of all the atoms in our example), it is a natural choice
to implement a sequential algorithm using memory-resident
data structures to keep track of the updated states associated
with the time series (because all the states fit in memory).

Maintaining a correctly updated data structure, however,
requires that the frames be accessed in a strictly ascending
order. Out-of-order processing of frames could result in
incorrect results—for example, by disrupting the state
transition flow dictated by Fig. 3. An undesirable side effect of
such a traditional sequential analysis method is that it is
difficult, if not impossible, to parallelize the analysis codes due
to the strong data dependence imposed by the order in which
frames must be accessed.

B. A New Data Analysis Model
To take advantage of parallel processing, we introduce a

new data analysis model that organizes an analysis task into
three distinct steps, as shown in Fig. 4:

1) Trajectory definition. Instead of specifying the order of
accessing trajectory frames, we declare the frames to be
analyzed as a set—for example, by providing the indices of
the first and last frame to be analyzed and a stride value that
specifies how many frames should be skipped between frames.

2) Per-frame data acquisition and analysis. After
acquiring the atom coordinates and velocities from a particular
frame, we extract quantities of interest or compute analysis
results for that frame independently from operations
performed on other frames or any prior results.

3) Cross-frame data analysis. After all data of interest
have been retrieved or computed from individual frames, we
conduct cross-frame analysis for each time series
independently, which may involve a number of iterations as
indicated by the loop-back arrow in Fig. 4.

This model allows for parallel processing of an MD
trajectory analysis in two stages. In the first stage, the
trajectory definition step and the per-frame data acquisition
analysis step jointly create parallel I/O and computational tasks
that can be distributed among processors. Knowing what data
(i.e., the frames) a user program needs rather than how the
program wants to access the data (i.e., the order) provides an
opportunity for out-of-order parallel I/O. The only requirement
is that all frames must be accessed at some point by some
processor; the particular order of data access is no longer
relevant. Once a distributed consensus is reached regarding
which processor is responsible for which frames, per-frame
data acquisition and analysis can proceed in parallel without
further communication. In the second stage, cross-frame data
analysis tasks associated with different time series are carried
out by parallel processors simultaneously.

The proposed model may appear to be inapplicable to those
analysis scenarios where an algorithm depends on the results or
states computed from previous frames to decide what to do
with the current frame. Our solution to this problem is to
redesign an analysis to eliminate the strong data dependence
between adjacent frames. We first retrieve all potentially
useful data in the per-frame data acquisition and analysis step,
and later identify and ignore unused data in the cross-frame
analysis step. In our sample application, we can record the

coordinates of all ions. As we execute the state transition
machine for each time series in the cross-frame data analysis
step, we can identify the ions that have never permeated the
channel and simply ignore them. Because the quantity of data
associated with useless coordinates is bounded by the number
of ions (recall that they account for fewer than 1% of all
atoms), the overhead of retrieving and storing the extra data is
negligible. In general, whether our model is applicable
depends on the data access pattern and algorithmic design of an
application.

The real challenge is how to connect the two stages of
analysis—that is, how to tie together the pieces of a time series
extracted in the per-frame data acquisition and analysis step,
and deliver the combined result to a single processor that is
responsible for carrying out the cross-frame data analysis task
for that particular time series. To solve this problem, we make
use of the programming interface of Google’s MapReduce.

Figure 4. Casting an MD analysis into three steps that are amenable to
parallel processing.

C. MapReduce Revisited
The conceptual jump to connect the data analysis model

just described to MapReduce is the re-thinking of the usage of
the key-value pairs. A key, instead of being thought of as a
numerical value or a word, should be thought of as a
categorical identifier or name for a group of related values.
For instance, we can use the unique integer identifier of a
potassium ion as a key to identify all its time-varying
coordinates extracted from a trajectory. Additionally, a value
associated with a key should carry a timestamp field (e.g.,
frame number or physical time) in addition to the quantities of
interests (e.g., the coordinates of ions). Because the order of
access to trajectory frames is not specified in our model, the
timestamp field is necessary for reconstructing a valid time
series (in ascending time order). Therefore, a key-value pair
within an MD analysis takes the following form:

(categorical name, (timestamp, quantities of interest))

Cast into the programming model of MapReduce, the per-
frame data analysis step corresponds to the map() function. It
retrieves or computes quantities of interest and produces key-
value pairs that contain categorical names and timestamps. The
cross-frame data analysis step corresponds to the reduce()
function of MapReduce. It processes and analyzes the value
lists (i.e., time series) associated with individual keys (e.g., a
particular ion). It is the understanding and realization of such a
connection that has prompted us to adopt the programming
interface of MapReduce.

IV. THE HIMACH FRAMEWORK
To support the parallel data analysis model described in

Section III, we have developed a parallel analysis framework
called HiMach, which consists of an API that allows a user to
write trajectory analysis programs sequentially, and a runtime
that carries out the parallel execution of user programs
automatically. We have implemented HiMach using Python
and pyMPI [20]. In our implementation, we treat multiple
cores on a single chip as separate processing units as if they
were independent processors. We use the term processor
generically in this paper to refer to either a single-core
processor or a core on a multi-core chip.

A. The HiMach API
The HiMach API allows users to (1) define a trajectory of

interest, (2) carry out per-frame analysis, (3) implement cross-
frame analysis, (4) aggregate intermediate results when
necessary, and (5) launch an analysis job and transfer control to
the HiMach runtime.

1) Trajectory Definition: The HiMach API provides a
Python class called TrajectoryDescriptor for the user
to define a trajectory of interest. Except for the initialization
method that performs basic sanity checks, this class has no
other methods.

A TrajectoryDescriptor object records the
characteristics of the trajectory of interest, using attributes
shown in TABLE I. Most of the attributes are self-explanatory
except for usevmd, traj_am, and seltype.

The usevmd attribute allows a user to specify whether
VMD is used within their analysis programs. We will explain
how VMD is automatically loaded and how HiMach and user
programs interact with VMD in Section IV-B3.

The traj_am attribute allows a user to define a function
that takes a frame number as input and outputs the name of the
file to be accessed, the offset in the file, and the number of
bytes to be read, thus overriding HiMach’s default file name of
traj_dir/frameX, where X stands for the number of the
frame being accessed.

The seltype attribute specifies how a trajectory is
accessed for the purpose of an analysis. The default value of
the seltype attribute is strided and the only other valid
value is fixed. Although most applications analyze only one
trajectory at a time, a user may need to pair up two trajectories,
or even group three or more trajectories for cross-trajectory

analysis. The HiMach API supports such analysis scenarios by
allowing a user to create a contrail, a Python list that contains a
number of TrajectoryDescriptor objects. A contrail is
an extension to the simple concept of a trajectory and may take
one of the following forms:

TABLE I. ATTRIBUTES OF A TrajectoryDescriptor OBJECT

Attribute Usage
molfmt Format of the molecular structure file
molfname Pathname to the molecular structure file
traj_dir Directory where frames are stored
usevmd Whether VMD is used
traj_am User-defined frame access method
seltype Frame access pattern
begin First frame to be accessed for a strided access
end Last frame to be accessed for a strided access
stride Number of frames to skip for strided access
fixed_frameno Frame number of a fixed access

Figure 5. A contrail consisting of two trajectories.

• Strided access mode: a single strided trajectory,
defined by the begin, end, and stride attributes

• Fixed access mode: a particular frame of a trajectory,
defined by the fixed_frameno attribute

• Hybrid access mode: one or more strided trajectories
and one or more fixed trajectories

For the hybrid access mode, we define the length of the
contrail as the length of the longest strided trajectory. The
fixed_frameno frames from the fixed trajectories are
logically replicated as many times as necessary to match the
length of the contrail as shown in Fig. 5.

2) Per-Step Data Acquisition: The HiMach API provides a
class named Mapper as a template for a user to define the
logic of per-step data acquisition. A step comprises one frame
from each of the trajectories that a user defines in a contrail, as
shown in Fig. 5. Note that we have dropped the use of term
“per-frame data acquisition” defined in Section III-B in favor
of “per-step data acquisition” to refer to the more general case
of contrails.

The Mapper class consists of two methods, init() and

map(), both receiving the same input parameter, step,
which is constructed and passed in by the HiMach runtime.
The parameter step is a Python list whose entries, referred to
as cursors, record the properties of the frames belonging to a
step on a contrail. The order of cursors in the step list is the
same as the order of the TrajectoryDescriptor objects
a user specifies in the corresponding contrail list.

class Mapper(object):
 def init(self, step):
 return
 def map(self, step):
 raise NotImplementedError

The init() method allows a user to implement deferred
runtime initialization of an analysis program. It is called by the
HiMach runtime once on each processor, before any frame is
processed on that processor. For example, a user may define a
set of VMD atom selection objects within an init() method.
Such statements are executable only if VMD has been
initialized and the molecular structure file has been loaded,
neither of which has taken place when a Mapper object is

created. Hence, it is impossible to combine such initialization
with the default Python initialization routine __init__(); we
must defer the initialization until HiMach has loaded VMD and
the molecule structure file. If a user does not override this
method, it has no effect at all.

The map() method, also implemented by a user, typically
uses the VMD atom selection language to conduct RMSD
alignment or select coordinates of the atoms, and produces key-
value pairs (in the form as specified in Section III-C) using the
Python yield statement.1 The key-value pairs are saved on
local disk transparently to the application by the HiMach
runtime. Besides simple data extraction, a map() method can
also perform more compute-intensive processing of a frame
and produce derived key-value pairs.

3) Cross-Step Data Analysis: A class called Reducer
provides an interface for a user to implement cross-step data
analysis. The only method of this class is reduce(), with
input parameters key and valuelist representing a
categorical name and the associated list of values,
respectively. Both parameters are constructed and passed in
by the HiMach runtime.

If a user program needs to process the value lists as a time
series, the first step in the reduce() method is to sort the list
in ascending timestamp order. Existing sequential algorithms
can then be applied to the reconstructed time series.

In the process of developing and deploying the HiMach
framework, we noticed that a single-round reduce, as
implemented by the original MapReduce model, is insufficient
for many MD trajectory analyses, which instead require
multiple rounds of data analysis and synthesis—for instance,
summarization or reduction of previously computed analysis
results.

Based on this observation, we implemented a new feature
within HiMach to allow a user program to conduct multiple
rounds of reduce operations. If a reduce() method yields
key-value pairs instead of returning directly, it is an indication
that another round of reduce operation is needed by the user
code. The newly yielded key-value pairs are saved by the
HiMach runtime in the same manner as are the key-value pairs
yielded by the map step. To avoid mixing the two types of
key-value pairs, the HiMach runtime keeps the new list of key-
value pairs separate from those generated by the map step or by
previous rounds of reduce operations.

4) Aggregation of Partial Results: When a map() or
reduce() method yields a value for a particular key, the
default action taken by the HiMach runtime is to append the
value to a list associated with that key. In certain cases,
however, it is more efficient to aggregate the partial results in
an application-specific way rather than simply keeping the

1 When a yield statement within a Python function is executed, the

data object being yielded is returned to the caller of the function and control is
transferred back to the caller. When the same function is called again,
execution resumes from the statement immediately following yield.

values in a list. To support this kind of processing, the
HiMach API provides an additional class called
MapReducer, which exports an assemble() method.

Figure 6. User-defined assemble functions.

class Reducer(object):
 def reduce(self, key, valuelist):
 return

As illustrated in Fig. 6, a user can optionally override the
default assemble() method to instruct the HiMach runtime
on how to aggregate (shown as assemblem in Fig 6) the key-
value pairs as they are produced by the map() method locally
on the same processor, and how to aggregate (shown as
assembler in Fig 6) the value lists associated with a
particular key sent by another processor. Whether the two
types of aggregation are the same is application-dependent. By
aggregating the intermediate results, a user can reduce both the
memory usage by each processor and the traffic on the
communication network.

HiMach’s support for dynamic data aggregation is an
extension of the combiner function originally proposed by
Google’s MapReduce [13]. The difference between the two is
that the combiner function is called only after all the key-value
pairs have been produced on a processor, while the
assemble() method is called as lists become available. In
addition, no explicit data aggregation is supported on the
receiving processors in MapReduce.

5) Control Transfer to the HiMach Runtime: After the user
defines the data (a contrail object) and the computation (a
MapReducer object), the user then calls a HiMach API
function named launch() to transfer the control to the
HiMach runtime.

B. The HiMach Runtime
The HiMach runtime, as shown in Fig. 7, executes in

parallel on all processors. It implements all the machinery of
executing user programs in parallel, which include
(1) assigning tasks to processors, (2) issuing parallel I/O
requests, (3) interacting with VMD, (4) storing and managing
temporary results (key-value pairs), and (5) communicating
and exchanging data among processors.

1) Task Assignment: Two separate types of tasks are
associated with a HiMach program: per-step data acquisition
and analysis tasks (map tasks) and cross-step analysis tasks
(reduce tasks). The assignment of map tasks is independent
from that of reduce tasks, and the assignment of reduce tasks
for a particular round is independent from that of other rounds.
Fig. 7 shows one map task and two rounds of reduce tasks
assigned to a processor.

We assume that the amount of work associated with each
map task—for example, the time spent retrieving and
extracting data from a single frame or computing a quantity
associated with a frame—is more or less the same. We also
assume that the cross-step analysis workload associated with
each reduce task of the same round is roughly the same.

In our current implementation, we use a simple block data
decomposition algorithm to assign tasks to processors. For
map tasks, we divide a list of trajectory frames evenly among
all processors, each responsible for executing the map tasks
associated with a contiguous set of frames. No interprocessor
communication is needed for assigning map tasks. To assign
reduce tasks, we conduct one round of a global collective
operation (i.e., with MPI_Allgather) to obtain the complete
list of intermediate keys to reduce. The keys are treated as if
they were elements of a contiguous array. We apply the same
block data decomposition algorithm to partition these keys
among processors. Note that to avoid a potential performance
bottleneck, we do not use a single master node to assign map or
reduce tasks.

2) Parallel I/O: Parallel I/O takes place after the map tasks
have been assigned to processors. Since the frames to be
accessed by each processor have already been determined, no
communication is required to coordinate I/O. We assume that
trajectory frames are organized in such a way—for example,
as a sequence of megabyte-sized files—that they are amenable
to efficient parallel I/O if a sufficiently large number of I/O
requests are outstanding. At runtime, HiMach issues file read
requests on behalf of a user program and passes the data of
each frame to the map() method as an input parameter. The
write operation, which outputs the final results of an analysis,
is handled by the user program itself. Since a user program
cannot select on which processor a map() or reduce()
function is executed, it must create or open files on a global

file system such as a network file system (NFS) or a parallel
file system to write out the results.

Figure 7. Overview of the HiMach runtime on a single processor. The ovals
represent a map task and two rounds of reduce tasks executing on the same
processor.

3) Interaction with VMD: We use VMD to allow user
programs to manipulate and conduct computation on atoms,
bonds, and other molecular structures. We have not
parallelized VMD; instead, we support parallelism by running
and interacting with an instance of VMD on each processor
using the following method.

When a user program indicates that it needs to use VMD,
the HiMach runtime first automatically starts a local instance of
VMD on each processor and loads the appropriate molecular
structure file. Next, it calls a VMD built-in function named
molecule.dupframe() to create a placeholder frame
buffer for the molecule structure. Then, the HiMach runtime
calls the VMD vmdnumpy.positions() function to obtain
a handle to the newly created internal frame buffer. This buffer
handle becomes the interface between HiMach and VMD.

At this point, HiMach calls the user-defined init()
method to perform deferred initialization and then starts
reading trajectory frames on behalf of the user program. Once
a frame is retrieved, the HiMach runtime copies the coordinates
of the atoms to the buffer handle, overwriting the coordinates
of the previously processed frame.

The frame number, the VMD frame buffer handle, and the
molecule ID (generated automatically by VMD) are passed to
the user-defined map() method as input parameters. Within
the map() method, all user-issued VMD commands operate
on the coordinates of the new frame. Thus, the loading of new
atom coordinates and the updating of the input parameter list
are handled automatically by the HiMach runtime.

4) Key-value data management: We have observed that
the Python interpreter uses a large amount of memory to keep
track of long value lists, resulting in memory thrashing of both
user programs and the HiMach runtime. As a remedy to this
problem and also as a measure to deal with long MD
trajectories (which will exhaust the main memory on each
processor regardless of the behavior of a Python interpreter),
as well as to support applications that retrieve a large
percentage of input frame data (instead of the 1% that our
sample application uses), we use an out-of-core data
management scheme to keep track of key-value pairs.

We set an internal counter to record the number of key-
value pairs that have been yielded. Once the counter reaches a
preset, tunable threshold, the values associated with the keys
are serialized and output to temporary files on local disk.
Memory space previously used by the value objects is released
and the internal counter is reset to 0. The management of the
temporary files is transparent to the user program. They are
given unique names by the HiMach runtime and are associated
with the memory-resident partial value lists. When inter-
processor communication takes place, the temporary
serialization files are exchanged among processors directly.
The HiMach runtimes on the receiving processors deserialize
the values from the files and reconstitute the lists for the
respective keys without user involvement.

5) Communication: Unlike Google’s MapReduce, which
uses remote procedure calls (RPCs) to copy data from other
processors, the HiMach runtime uses MPI to exchange data

among processors. The advantage is that HiMach avoids the
potential performance bottleneck associated with a single
master node, which has to keep track of the progress of each
process and inform processes when to start RPC copies. The
disadvantage is that HiMach does not provide the fault
tolerance offered by MapReduce: if one compute node goes
down during an analysis execution, the HiMach user program
must be re-executed from the beginning.

Because the amount of data (value lists) associated with the
keys from a very long trajectory may approach or even exceed
the main memory size on each processor, it is inefficient, and
sometimes impossible, to post all the MPI receives
simultaneously. We have therefore devised a more regulated
communication protocol to exchange data among MPI
processes, which takes place in p 1 rounds where p is the
number of MPI processes. At round k, process i sends data (if
any) to process (i + k + 1) mod p and receives data (if any)
from process (i k 1) mod p.

Fig. 8 shows the conceptual model of the communication
protocol. The tick-marks on the circles denote MPI ranks. The
inner circle represents the senders and the outer circle the
receivers. Now fix the outer circle and dial the inner circle
clockwise one tick-mark at a time. We obtain p 1 different
alignment configurations (ignoring the case of a matching
alignment that represents self-communication). Each of the
inner-outer circle alignments defines a unique round of
communication in which each MPI process on the inner circle
sends to the corresponding MPI process on the outer circle the
values associated with the keys that the outer process is
responsible for reducing. For example, in the configuration
shown in Fig. 8, process 0 sends data to process 1 and receives
data from process p 1. Each MPI process proceeds to the
next round of communication only after it finishes the current
round. In the end, every process communicates to every other
process in the system. The multiple rounds of pair-wise
communication are designed to control the amount of data
pushed to the communication network and to bound the
memory usage of both senders and receivers.

In summary, the HiMach framework allows users to
implement an MD trajectory analysis using a MapReduce-style

interface, make use of the analytical capability of VMD,
perform data aggregation when necessary, and conduct
multiple rounds of data analysis and synthesis.

Figure 8. Data exchange between MPI processes. The inner circle represents
the senders and the outer circle the receivers. Each (tick-mark) alignment
configuration defines a round of communication.

Figure 9. An electron density map. The green contours are associated with
potassium ions, red contours with water molecules, and grey-blue contours
with the atoms of proteins.

V. APPLICATIONS
We have so far presented the HiMach framework in an

abstract setting, referring only briefly to the needs of
applications. This section provides three real-world examples
to illustrate the programmability and flexibility of the HiMach
framework. For the purpose of this paper, we provide only an
overview of the example applications and an outline of the key
algorithmic techniques.

A. Electron Density Map Construction
An electron density map defines a frame’s 3D spatial

(probability) distribution of electrons, thus illustrating the
atomic structure of proteins and other macromolecules. While
electron density maps are generally obtained through physical
experiments such as X-ray diffraction measurements or
electron microscopy reconstructions, MD simulations have
introduced a new way of constructing electron density maps, as
shown in Fig. 9. The iso-electron-density contours, shown as
chicken-wire meshes, approximately represent the locations of
potassium ions and water molecules within a conduction
channel outlined by the rectangular box. The electron density
map of an MD trajectory is defined as the average of the
electron density maps associated with individual frames.

We design a HiMach analysis algorithm as follows:
(1) write a stand-alone function that computes the electron
density map for a single frame (the specifics are beyond the
scope of this paper); (2) define a map() method that calls that
function and yields (’electron map’, (emap,
fcount)) as the output key-value pair, where emap (a
Python Numpy array) records the electron map of a single
frame, and fcount, which is initialized to 1, records how
many frames have contributed to the resulting emap;
(3) override the assemble() method of the MapReducer
object to sum up partial results of emap and fcount (to
minimize memory usage on each processor and enable parallel
summation of partial results); and (4) define a reduce()

method that divides the final accumulated electron density map
(emap) by the number of frames processed (fcount).

Algorithmically, this program falls into the so-called
“embarrassingly parallel” category. It does not even need to
perform cross-step data analysis on time series. Nevertheless,
it represents an effective and commonly-used method for MD
trajectory analysis.

B. Ion Permeation Reimplemented
The reimplementation of the analysis of ion permeation

through a channel is more complicated than the example in the
previous section. The approach to achieving parallelism, as
outlined in Section III-A, is to retrieve all coordinates of ions,
and to identify and ignore the useless data later.

We implement a map() method to extract all the
coordinates of potassium ions and yield (ion_id,
(t,x,y,z)), where ion_id is an ion identifier, t is the
physical time of trajectory frame, and x, y, and z are the
coordinates of the ion within a trajectory frame. The
reduce() method, responsible for processing a time series
associated with the coordinates of each potassium ion, first
reorders the value list using the physical time t as the sorting
key, and then implements the state transition diagram shown in
Fig. 3.

Such an algorithmic design may seem counterintuitive,
since we have to do more—and potentially useless—work in
order to carry out the analysis more efficiently. But as noted
above, the potassium ions account for only a small percentage
of the atoms of a molecular system; in exchange for a small
amount of additional data retrieval and processing, we are able
to parallelize and speed up the entire computation.

C. All-to-All RMSD within a Sliding Window
The root mean squared deviation (RMSD) is a measure that

quantifies the structural “proximity” between two frames with
respect to a set of atoms. It is defined as

(),
2

1
/i j

k
aa

RMSD kr
=

= , where i, j are frame numbers, k is

the number of user-specified atoms, and is the distance
between the positions of the atom a in frame i and j.

ar

The goal of the analysis is to compute the mean value of all
pair-wise RMSD values within a fixed-size sliding window of

w consecutive frames, which slides forward in time by a
progression size of s frames at a time. The user-specified
atoms involved in the RMSD calculation are the alpha carbons
on the main chain of a protein, which account for fewer than
1% of the atoms in the system.

Fig. 10(a) shows the symmetric RMSD matrix for an MD
trajectory with n frames. Each triangle, for example the one
labeled abc, represents a sliding window. All matrix entries
(RMSD values) within a triangle are needed by the
corresponding sliding window to compute the statistics
correctly. Naive parallelization of this calculation by assigning
each window to a processor (whether using HiMach or MPI
directly) would result in inefficient and redundant data accesses
and computations due to the overlaps between the sliding
windows.

The HiMach algorithm we developed reads each frame
once and computes the RMSD of each distinct (i, j) pair once.
The key idea is to convert the computation associated with a
dynamically sliding window to that of a fixed set: all entries in
the “serrated” band of the RMSD matrix, as shown in
Fig. 10(b), are computed first regardless of how many sliding
windows overlap on the entries. The RMSD values are then
distributed to the associated sliding windows for statistical
calculations.

We partition the workload of computing the “serrated”
band among processors (more or less) evenly as shown by the
45-degree partition lines in Fig. 10(c). Each computational
task—identified in Fig. 10(c) as a patch bounded by the
diagonal of the matrix, two adjacent partition lines, and the
“serrated” edge—is assigned a unique task ID, starting from 0
at the upper left corner and increasing monotonically towards
the lower right corner of the RMSD matrix. For example,
task 1 corresponds to a polygonal patch labeled by mnbopqc.

The task IDs provide the bridge that connects the per-step
data analysis step with the cross-step analysis step. When a
map() method receives an input frame i from the HiMach
runtime, it extracts the atomic positions of interest, computes
the IDs of the tasks whose patches intersect row i or column i,
and yields a sequence of key-value pairs, using the computed
task ids as the keys, and the frame number i and the atomic
positions as the value. That is, those task IDs need the set of
atomic positions from frame i to compute the matrix entries
within their respective patches.

Figure 10. All-to-all RMSD within a sliding window.

(a) A symmetric RMSD matrix. (b) A “serrated” band. (c) Workload partitioning.

We conduct two rounds of reductions. In the first round,
each reduce task computes the RMSD values within its patch,
identifies the sliding windows to which each of its matrix
entries contributes, and yields key-value pairs, using the sliding
window IDs as the keys and the RMSD values as the values.
In the second round, each reduce task computes the mean of
the input RMSD values associated with each sliding window.

Although data replication occurs in both rounds of reduce
operations, neither represent a scalability bottleneck. In the
first round, some atomic positions are replicated (distributed)
among multiple reduce tasks that compute matrix band entries.
The overhead is negligible since (1) it only occurs when frames
near the partition lines are processed; (2) the quantity of data
involved is small (fewer than 1% of all atoms); and (3) the
replication ratio drops when very long trajectories are involved.
In the second round, the RMSD values are replicated
(distributed) among multiple reduce tasks that calculate
statistics associated with the sliding windows. The cost,
bounded by w/s, where w is the size of the sliding window
and s is the progression size, is not affected by the number of
processors or the length of a trajectory.

The three examples, though constituting only a small
selection of real-world applications, capture the complexities of
a large variety of analysis scenarios, ranging from the
“embarrassingly parallel” to the moderately complex to the
more sophisticated.

VI. PERFORMANCE EVALUATION
We use two HiMach analysis programs presented in

Section V—the tracking of ion permeation through a channel
and the computation of a sliding-window RMSD—to drive the
performance evaluation of our framework. We refer to the two
analyses as the permeation program and the RMSD program,
respectively. Note that our benchmarking implementation of
the ion permeation analysis is slightly different from what we
described in Section V-B. Instead of generating one time series
for each individual ion, the permeation program generates a
time series of vectors, each of which records the positions of all
ions within a frame. In other words, one reduce task processes
all ions.

Our performance data were obtained from running the
permeation and RMSD programs on a commodity Linux
cluster with 128 compute nodes. Each node has two Intel Xeon
2.66 GHz quad-core processors, 16 GB of memory that is
shared by all 8 processor cores, and two 250 GB SATA disks

that are organized in a RAID 1 (mirrored) configuration. The
operating system running on the nodes is CentOS 4.6 with a
Linux kernel version of 2.6.22. The nodes are interconnected
via a Gigabit Ethernet connection. All nodes have access to a
NFS directory exported by a Sun x4500 storage server, which
has a capacity of 40 TB. Although the NFS directory has the
capacity to store terabyte MD trajectories, our experiments
show that the peak read bandwidth from the NFS server
flattens out at around 300 MB/s for our applications.

TABLE II. STRONG SCALING OF THE PERMEATION PROGRAM

Nodes 1 1 1 2 4 8 16 32 64 128

Cores 1 2 4 8 16 32 64 128 256 512

Frames/core 83750 41875 20938 10469 5234 2617 1309 654 327 164

Total time(s) 17792 11740 9458 4828 2495 1308 691 389 233 183

 Map time (s) 17767 11716 9435 4804 2471 1284 665 362 202 134

 Reduce time(s) 25 24 23 24 24 24 26 27 31 49

Map throughput (MB/s) 8.9 13.6 16.6 32.5 63.3 119.8 225.7 414.0 695.1 1061.6

Parallel efficiency (node) n/a n/a 100% 98% 95% 90% 86% 76% 64% 40%

To achieve better I/O performance, we installed a
PVFS2 [21, 22] parallel file system on 64 of the 128 compute
nodes and used PVFS2 to store and retrieve trajectory frames.
To alleviate resource contention, we used only 4 cores per node
for the analysis applications in our experiments, leaving the
remaining 4 cores to run the PVFS2 servers. Although the 64-
node PVFS2 file system does not match the performance of
NFS when a single core is used to run applications (8.9 MB/s
on PVFS2 vs. 38 MB/s on NFS), PVFS2 outperforms NFS by
up to a factor of 4 when a large number of cores issue parallel
I/O requests simultaneously.

A. Strong Scalability
In this set of experiments, we fix the MD trajectory to be

analyzed and increase the number of cores that execute a
HiMach program. The objective is to assess how much faster a
HiMach program can run while more resources (compute
nodes) are added to solve a fixed-size problem.

The MD trajectory analyzed by the permeation program
consists of 83,750 frames, each 1.97 MB in size. The total size
of the trajectory is 154 GB. The frames are organized in files
of size 67.2 MB, each of which contains 34 consecutive
frames.

TABLE II shows the performance of the permeation
program. As we increase the number of cores from 1 to 512,
the running time decreases from about 5 hours to 3.5 minutes—
an improvement of nearly 2 orders of magnitude. The
permeation program, like many other trajectory analysis codes,
is I/O bound. The time spent in the map() function, which is
responsible for retrieving and extracting data from a frame,
dominates the time spent in executing the reduce()
function, especially on a small number of cores. Thus, the
main performance gain comes from the improvement of map
throughput, which increases from 8.9 MB/s on 1 core to 1061.6
MB/s on 512 cores. The increase of map throughput, however,
is non-linear. At the low end, when we increase the number of

cores from 1 to 2 to 4, the sustained map throughput rate does
not improve linearly (the suboptimal performance may be
caused by resource contention on a single compute node). As
we increase the number of cores from 4 to 128, using more and
more compute nodes, the performance improves almost
linearly. The parallel efficiency with respect to the
performance of 4 cores on a single node is above 75% until we
use 64 nodes. At this point, the performance improvement
slows down, as we approach the upper limit of sustained
parallel read bandwidth of the PVFS2 file system.

The MD trajectory analyzed by the RMSD program
consists of 110,740 frames, each with a size of 823 KB. The
total size of the trajectory is 85 GB. Every 82 consecutive
frames are organized in a file of size 67.5 MB.

The performance characteristics of the RMSD program,
shown in TABLE III, are similar to those of the permeation
program. As in the case of the permeation program, the
running time of the RMSD program improves from about
3.5 hours to 2 minutes as we increase the number of cores used
from 1 to 512. The reduce() function of the RMSD
program, unlike that of the permeation program, is executed in
parallel on all the cores, as explained in Section V-C. The
reported time for the reduce() function also includes the
overhead of inter-processor communication. TABLE III also
shows that the time spent in the reduce() function decreases
proportionally to the number of cores used until 512 cores, at
which point the cost of communication overtakes the execution
time of the reduce() function and becomes the dominant
factor. In fact, the reduce time for 512 cores is longer than that
for 256 cores. The degradation in performance suggests that
the communication-to-computation ratio (i.e., the ratio between
the width of an inter-task partition edge and the area of a patch)
for this problem on 512 cores has become too large to be
efficient.

B. Weak Scalability
In this set of experiments, we fix the amount of work each

core carries out and increase both the length of a trajectory and
the number of cores for executing a HiMach program. The
goal is to assess how the HiMach framework will perform
when we add more resources to solve a proportionally larger
problem. We created a synthetic data set by replicating the
RMSD trajectory 12 times to generate a one-terabyte data set.

Our experiment started from 4 cores analyzing an 87 GB
trajectory, and scaled to 512 cores analyzing the full 1 TB

synthetic trajectory. In the ideal case, the running time of each
experiment would be the same. TABLE IV shows the weak
scaling performance of the RMSD program. Note that in all
experiments each core processes 2,400 frames. The per-node
parallel efficiency exceeds 85% until 512 cores and then drops
to 66% due to sub-linear improvement in map throughput and
extra overhead in the reduce function. Nevertheless, the
running time of carrying out the analysis of a one-terabyte
trajectory is only 15 minutes on 512 cores.

Assuming that an MD simulation is capable of simulating
some biochemical system at a rate of 1 millisecond per day—
well beyond the capability of present day computer systems—
and also assuming that the simulation outputs frames every
10 picoseconds (1 picosecond = 10-12 second), then a total of
100 million frames will be generated a day, or roughly
1 million frames every 15 minutes. Given that the analysis
throughput rate of the RMSD program on 512 cores is in the
same range as the hypothetical trajectory frame generation rate,
we believe that HiMach has the scalability and performance to
support data analysis of millisecond-scale MD simulations.

TABLE III. STRONG SCALING OF THE RMSD PROGRAM

Nodes 1 1 1 2 4 8 16 32 64 128

Cores 1 2 4 8 16 32 64 128 256 512

Frames/core 110740 55370 27685 13843 6921 3461 1730 865 433 216

Total time(s) 12332 8564 6443 3383 1717 897 452 235 129 104

 Map time (s) 8166 6398 5113 2575 1307 691 350 183 98 64

 Reduce time(s) 4166 2165 1330 808 410 205 102 52 31 40

Map throughput (MB/s) 10.6 13.6 17.0 33.8 66.5 125.8 248.5 474.6 884.6 1351.3

Parallel efficiency (node) n/a n/a 100% 99% 98% 92% 91% 87% 78% 45%

VII. SUMMARY
Using the end-to-end time to solution—be it discovery,

understanding, or intuition—as the metric of success of
computer-based molecular modeling, we must take into
account the time of post-simulation analysis that converts data
to human-interpretable results in addition to the time spent in
an MD simulation. Because sequential analysis methods are
unable to deliver the necessary computational power, memory
capacity, and I/O bandwidth to keep pace with the rapid
development of parallel MD simulations, we must seek a more
scalable solution.

In this paper, we have demonstrated—for the first time, we
believe—how to build a scalable and flexible parallel
framework to deal with massive MD trajectories, by combining
and extending the strengths of an emerging enterprise
computing technology (Google’s MapReduce) and an existing
sequential analysis tool (UIUC’s VMD).

Even though HiMach, our prototype system, is developed
specifically for MD trajectory analysis, its design principles
and implementation techniques are potentially applicable to
data analysis for other types of simulations, including
gravitational simulations in astrophysics, particle simulations in
plasma physics, smooth particle hydrodynamics simulations in
fluid dynamics, and unstructured mesh-based PDE simulations.

[8] R. Fine, G. Dimmler, and C. Levinthal, “FASTRUN: A special purpose,
hardwired computer for molecular simulation,” Proteins, vol. 11, no. 4,
pp. 242–253, 1991, (erratum: 14(3): 421–422, 1992).

TABLE IV. WEAK SCALING OF THE RMSD PROGRAM

Nodes 1 2 4 8 16 32 64 128

Cores 4 8 16 32 64 128 256 512

Frames 9600 19200 38400 76800 153600 307200 614400 1228800

Frames/core 2400 2400 2400 2400 2400 2400 2400 2400

Total time(s) 603 620 614 605 612 610 692 858

 Map time (s) 465 480 476 466 469 505 522 634

 Reduce time(s) 138 140 138 139 143 155 170 224

Map throughput (MB/s) 16.2 31.4 63.3 129.4 257.4 477.9 925.1 1521.2

Parallel efficiency (node) 100% 99% 98% 92% 91% 87% 78% 45%

ACKNOWLEDGMENT
We are grateful to Rebecca Kastleman for her assistance

with this paper. We thank Phil Carns, Sam Lang, and Rob
Ross from Argonne National Laboratory for answering
technical questions specific to the PVFS2 file system that they
have been developing. We also thank the anonymous
reviewers for their comments that helped improve this paper.

[9] S. Toyoda, H. Miyagawa, K. Kitamura, T. Amisaki, E. Hashimoto, H.
Ikeda, A. Kusumi, and N. Miyakawa, “Development of MD Engine:
High-speed accelerator with parallel processor design for molecular
dynamics simulations,” J. Comp. Chem., vol. 20, no. 2, pp. 185–199,
1999.

[10] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and
A. Konagaya, “Protein Explorer: A petaflops special-purpose computer
system for molecular dynamics simulations,” in Proc. 2003 ACM/IEEE
Conf. on Supercomputing (SC03), Phoenix, AZ, November 2003. REFERENCE

[11] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J.
K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P.
Eastwood, J. Gagliardo, J. P. Grossman, R. C. Ho, D. J. Ierardi, I.
Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R.
Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, and
S. C. Wang, “Anton, a special-purpose machine for molecular dynamics
simulation,” in Proc. 34th Ann. Intl. Symp. on Computer Architecture,
San Diego, June 2007, pp. 1–12.

[1] Y.-S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, B. R. Brooks,
“Parallelizing Molecular Dynamics Programs for Distributed-Memory
Machines,” IEEE Computational Science and Engineering, vol. 02, no.
2, pp. 18-29, 1995.

[2] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular
dynamics with NAMD,” J. Comp. Chem., vol. 26, no. 16, pp. 1781–
1802, 2005.

[12] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin, and J.
C. Sancho, “Entering the petaflop era: The architecture and performance
of roadrunner,” in Proc. 2008 ACM/IEEE Conf. on Supercomputing
(SC08), Austin, TX, November 2008.

[3] D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M.
Merz Jr., A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The
Amber biomolecular simulation programs,” J. Comp. Chem., vol. 26, no.
16, pp. 1668–1688, 2005.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. 6th Symp. on Operating System Design and
Implementation (OSDI04), San Francisco, CA, December 2004.

[4] M. Christen, P. H. Hünenberger, D. Bakowies, R. Baron, R. Bürgi, D. P.
Geerke, T. N. Heinz, M. A. Kastenholz, V. Kräutler, C. Oostenbrink, C.
Peter, D. Trzesniak, and W. F. van Gunsteren, “The GROMOS software
for biomolecular simulation: GROMOS05,” J. Comp. Chem., vol. 26,
no. 16, pp. 1719–1751, 2005.

[14] ——, “MapReduce: Simplified data processing on large clusters,”
Comm. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[15] W. Humphrey, A. Dalke, and K. Schulten, “VMD—Visual Molecular
Dynamics,” J. Mol. Graphics, vol. 14, no. 1, pp. 33–38, 1996.

[5] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A.
Gregersen, J. L. Klepeis, I. Kolossváry, M. A. Moraes, F. D. Sacerdoti,
J. K. Salmon, Y. Shan, and D. E. Shaw, “Scalable algorithms for
molecular dynamics simulations on commodity clusters,” in Proc. 2006
ACM/IEEE Conf. on Supercomputing (SC06), Tampa, FL, November
2006.

[16] PDB File Format, http://www.rcsb.org/pdb/home/home.do.
[17] J. S. Vitter, “External memory algorithms and data structures: Dealing

with massive data,” ACM Computing Surveys, vol. 33, no. 2, pp. 209–
271, 2001.

[6] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4:
Algorithms for highly efficient, load-balanced, and scalable molecular
simulation,” J. Chem. Theory and Comp., vol. 4, no. 3, pp. 435–447,
2008.

[18] Hadoop, http://hadoop.apache.org/core/.
[19] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”

in Proc. 19th ACM Symp. Operating Systems Principles, Bolton
Landing, NY, October 2003. [7] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. E.

Giampapa, M. C. Pitman, J. W. Pitera, W. C. Swope, and R. S. Germain,
“Blue Matter: Scaling of N-body simulations to one atom per node,”
IBM J. Research and Develop., vol. 52, no. 1/2, pp. 145–158, 2008.

[20] pyMPI, http://pympi.sourceforge.net/.
[21] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A

parallel file system for Linux clusters,” in Proc. 4th Ann. Linux
Showcase and Conf., Atlanta, GA, October 2000.

[22] PVFS, http://www.pvfs.org/.

